已知函数f(x)=x3-ax2+(a2-1)x+b(a,b∈R),其图象在点(1,f(1))处的切线方程为x+y-3=0.
(1)求a,b的值;
(2)求函数f(x)的单调区间,并求出f(x)在区间[-2,4]上的最大值.
老师要从10篇课文中随机抽3篇让学生背诵,规定至少要背出其中2篇才能及格.某同学只能背诵其中的6篇,试求:
(1)抽到他能背诵的课文的数量的分布列;
(2)他能及格的概率.
袋中装有黑球和白球共7个,从中任取2个球都是白球的概率为,现有甲、乙两人从袋中轮流摸取1球,甲先取,乙后取,然后甲再取,…,取后不放回,直到两人中有一人取到白球时即终止,每个球在每一次被取出的机会是等可能的,用ξ表示取球终止所需要的取球次数.
(1)求袋中原有白球的个数;
(2)求随机变量ξ的概率分布;
(3)求甲取到白球的概率.
在一次面试中,每位考生从4道题a、b、c、d中任抽两题做,假设每位考生抽到各题的可能性相等,且考生相互之间没有影响.
(1)若甲考生抽到a、b题,求乙考生与甲考生恰好有一题相同的概率;
(2)设某两位考生抽到的题中恰好有X道相同,求随机变量X的概率分布.
如图,从A1(1,0,0)、A2(2,0,0)、B1(0,1,0)、B2(0,2,0)、C1(0,0,1)、C2(0,0,2)这6个点中随机选取3个点,将这3个点及原点O两两相连构成一个“立体”,记该“立体”的体积为随机变量V(如果选取的3个点与原点在同一个平面内,此时“立体”的体积V=0).
(1)求V=0的概率;
(2)求V的分布列及数学期望E(V).
黄山旅游公司为了体现尊师重教,在每年暑假期间对来黄山旅游的全国各地教师和学生,凭教师证和学生证实行购买门票优惠.某旅游公司组织有22名游客的旅游团到黄山旅游,其中有14名教师和8名学生.但是只有10名教师带了教师证,6名学生带了学生证.
(1)在该旅游团中随机采访3名游客,求恰有1人持有教师证且持有学生证者最多1人的概率;
(2)在该团中随机采访3名学生,设其中持有学生证的人数为随机变量ξ,求ξ的分布列.