请你设计一个包装盒,如图所示,ABCD是边长为60cm的正方形硬纸片,切去阴影部分所示的四个全等的等腰直角三角形,再沿虚线折起,使得ABCD四个点重合于图中的点P,正好形成一个正四棱柱
形状的包装盒,E、
F在AB上是被切去的等腰直角
三角形斜边的两个端点,设AE=FB=xcm.
(1)若广告商要求包装盒侧面积S(cm)最大,试问x
应取何值?
(2)若广告商要求包装盒容积V(cm)最大,试问x应取何值?并求出此时包装盒的高与底面边长的比值.
已知函数.
(Ⅰ)求函数的定义域;(Ⅱ)根据函数单调性的定义,证明函数是增函数.
圆的方程为x2+y2-6x-8y=0,过坐标原点作长为8的弦,求弦所在的直线方程。
某厂生产某种零件,每只的成本为40元,出厂单价定为60元,该厂为鼓励销售商订购, 决定每次订购超过100个时,每多订一个,订购的全部零件的出厂单价就降低0.02元,但实际出厂单价不能低于51元
(1)当一次订购多少个时,零件的实际出厂单价恰好降为51元?
(2)设一次订购量为个,零件的实际出厂单价为P元,写出函数
的表达式.
已知:在空间四边形ABCD中,AC=AD,BC=BD,求证:AB⊥CD
已知全集={
},
={
},
={
} 求
、
、