(本题12分)已知数列{an}中,a1=0,a2 =4,且an+2-3an+1+2an= 2n+1(),
数列{bn}满足bn=an+1-2an.
(Ⅰ)求证:数列{-
}是等比数列;
(Ⅱ)求数列{}的通项公式;
(Ⅲ)求.
已知向量,函数
.
⑴设,x为某三角形的内角,求
时x的值;
⑵设,当函数
取最大值时,求cos2x的值.
已知函数.
⑴求函数在
处的切线方程;
⑵当时,求证:
;
⑶若,且
对任意
恒成立,求k的最大值.
巳知椭圆的离心率是
.
⑴若点P(2,1)在椭圆上,求椭圆的方程;
⑵若存在过点A(1,0)的直线,使点C(2,0)关于直线
的对称点在椭圆上,求椭圆的焦距的取值范围.
已知四棱锥P-ABCD中,PB⊥平面ABCD,底面ABCD是直角梯形,∠ABC=∠BCD=90°,PB=BC=CD=AB.Q是PC上的一点,且PA∥平面QBD.
⑴确定Q的位置;
⑵求二面角Q-BD-C的平面角的余弦值.
已知向量,函数
.
⑴设,x为某三角形的内角,求
时x的值;
⑵设,当函数
取最大值时,求cos2x的值.