(本题12分)
已知集合,
(1)当时,求
;
(2)若,求实数
的取值范围.
(本小题满分15分)已知函数(其中
) ,
点从左到右依次是函数
图象上三点,且
.
(Ⅰ) 证明: 函数在
上是减函数;
(Ⅱ) 求证:⊿是钝角三角形;
(Ⅲ) 试问,⊿能否是等腰三角形?若能,求⊿
面积的最大值;若不能,请说明理由.
(本小题共14分)已知函数。
(1)若为方程
的两个实根,并且A,B为锐角,
求m的取值范围;
(2)对任意实数,恒有
,证明:
.
已知函数
(1)求函数的最小正周期及在区间
上的最大值和最小值;
(2)若,求
的值。
(本小题满分12分)设函数.
(1)判断函数的奇偶性,并写出
时
的单调增区间;
(2)若方程有解,求实数
的取值范围.
(本题满分15分) 已知函数f (x)=x3+ax2+bx, a , b
R.
(Ⅰ) 曲线C:y=f (x) 经过点P (1,2),且曲线C在点P处的切线平行于直线y=2x+1,求a,b的值;
(Ⅱ) 已知f (x)在区间 (1,2) 内存在两个极值点,求证:0<a+b<2.