图1是由若干个小圆圈堆成的一个形如正三角形的图案,最上面一层有一个圆圈,以下各层均比上一层多一个圆圈,一共堆了n层.将图1倒置后与原图1拼成图2的形状,这样我们可以算出图1中所有圆圈的个数为:1+2+3+…+n=
图1 图2 图3 图4
如果图1中的圆圈共有12层,
(1)我们自上往下,在每个圆圈中都按图3的方式填上一串连续的正整数1, 2,3,4…,则最底层最左边这个圆圈中的数是 ;
(2)我们自上往下,在每个圆圈中都按图4的方式填上一串连续的整数−40,−39,−38,…,求图4中所有圆圈中各数的和.
如图,BD为⊙O的直径,AB=AC,AD交BC于点E,AE=2,ED=4.
(1)判断△ABE与△ADB是否相似,并说明理由;
(2)求AB的长。
(3)求的正切值;
已知二次函数的图象C1与x轴有且只有一个公共点.
(1)求C1的顶点坐标;
(2)将C1向下平移若干个单位后,得抛物线C2,如果C2与x轴的一个交点为A(—3,0),求C2的函数关系式,并求C2与x轴的另一个交点坐标;
在Rt△ABC中,∠C=900, tanB=, ∠ADC=45°,DC=6,求sin∠BAD
如图,△ABC中,CD是边AB上的高,且.
(1)求证△ACD∽△CBD;
(2)求∠ACB的大小.
已知:关于x的一元二次方程x2—(m—1)x+m+2=0
(1)若方程有两个相等的实数根,求m的值;
(2)若Rt△ABC中,∠C=90°,tanA的值恰为(1)中方程的根,求cosB的值.