某工厂生产一种机器的固定成本为5000元,且每生产100部,需要增加投入2500元,对销售市场进行调查后得知,市场对此产品的需求量为每年500部。已知年销售收入为,其中x是产品售出的数量
。
(1)若x为年产量,y 表示年利润,求
的表达式。(年利
润=年销售收入—投资成本(包括固定成本))
(2)当年产量为何值时,工厂的年利润最大,其最大值是多少?
已知椭圆的右焦点为
,短轴的端点分别为
,且
.
(1)求椭圆的方程;
(2)过点且斜率为
的直线
交椭圆于
两点,弦
的垂直平分线与
轴相交于点
.设弦
的中点为
,试求
的取值范围.
某公司承建扇环面形状的花坛如图所示,该扇环面花坛是由以点为圆心的两个同心圆弧
、弧
以及两条线段
和
围成的封闭图形.花坛设计周长为30米,其中大圆弧
所在圆的半径为10米.设小圆弧
所在圆的半径为
米(
),圆心角为
弧度.
(1)求关于
的函数关系式;
(2)在对花坛的边缘进行装饰时,已知两条线段的装饰费用为4元/米,两条弧线部分的装饰费用为9元/米.设花坛的面积与装饰总费用的比为,当
为何值时,
取得最大值?
如图,四棱锥中,底面
是平行四边形,
,
平面
,
,
,
是
的中点.
(1)求证:平面
;
(2)若以为坐标原点,射线
、
、
分别是
轴、
轴、
轴的正半轴,建立空间直角坐标系,已经计算得
是平面
的法向量,求平面
与平面
所成锐二面角的余弦值.
已知椭圆C:(a>b>0)的离心率为
,且椭圆C上一点与两个焦点F1,F2构成的三角形的周长为2
+2.
(1)求椭圆C的方程;
(2)过右焦点F2作直线l 与椭圆C交于A,B两点,设,若
,求
的取值范围.
已知函数在(0,1)上单调递减.
(1)求a的取值范围;
(2)令,求
在[1,2]上的最小值.