在平面直角坐标系中,已知点
,动点
在
轴上的正射影为点
,且满足直线
.
(Ⅰ)求动点M的轨迹C的方程;
(Ⅱ)当时,求直线
的方程.
如图,在矩形中,点
为边
上的点,点
为边
的中点,
,现将
沿
边折至
位置,且平面
平面
.
(Ⅰ)求证:平面平面
;
(Ⅱ)求四棱锥的体积.
设数列的首项为1,前n项和为Sn,且
(
).
(1)求数列的通项公式;
(2)设,
是数列
的前n项和,求
.
设的内角
,
,
所对的边长分别为
,
,
且
,
.
(1)若,求
的值;
(2)若的面积为3,求
的值.
已知椭圆上的点
到左右两焦点
的距离之 和为
,离心率为
.
(Ⅰ)求椭圆的方程;
(Ⅱ)过右焦点的直线
交椭圆于
两点.
(1)若轴上一点
满足
,求直线
斜率
的值;
(2)是否存在这样的直线,使
的最大值为
(其中
为坐标原点)?若存在,求直线
方程;若不存在,说明理由.