(本小题满分12分)设递增等比数列{}的前n项和为,且=3,=13,数列{}满足=,点P(,)在直线x-y+2=0上,n∈N﹡(Ⅰ)求数列{},{}的通项公式(Ⅱ)设=,数列{}的前n项和,若>2a-1恒成立(n∈N﹡),求实数a的取值范围.
数列满足 (1)证明:数列是等差数列; (2)求数列的通项公式; (3)设,求数列的前项和.
已知a,b,c分别为△ABC三个内角A,B,C的对边,. (1)求A; (2)若△ABC的面积为,求bsinB+csinC的最小值.
已知等差数列的首项公差且分别是等比数列的 (1)求数列和的通项公式; (2)设数列对任意正整数均有成立,求的值.
如图,在中,边上的中线长为3,且,. (1)求的值; (2)求边的长.
己知等比数列所有项均为正数,首项,且成等差数列. (1)求数列的通项公式; (2)数列的前n项和为,若S6=63,求实数的值.
试卷网 试题网 古诗词网 作文网 范文网
Copyright ©2020-2025 优题课 youtike.com 版权所有
粤ICP备20024846号