在正三角形ABC中,E、F、P分别是AB、AC、BC边上的点,满足AE:EB=CF:FA=CP:PB=1:2(如图1)。将△AEF沿EF折起到的位置,使二面角A1-EF-B成直二面角,连结A1B、A1P(如图2)(Ⅰ)求证:A1E⊥平面BEP;(Ⅱ)求二面角A1-BP-E的大小。
已知是椭圆的两个焦点,为椭圆上一点,. (1)求椭圆离心率的范围; (2)求证:的面积只与椭圆的短轴长有关.
已知双曲线,,为双曲线的两个焦点,点在双曲线上,求的最小值.
如图,过椭圆的右焦点作一直线交椭圆于两点,且到直线的距离之和为,求直线的方程.
已知是椭圆上的点,求的取值范围.
已知椭圆的左、右焦点分别是,离心率为.直线与轴,轴分别交于点是直线与椭圆的一个公共点,是点关于直线的对称点.设. (Ⅰ)证明; (Ⅱ)若,的周长为,写出椭圆的方程; (Ⅲ)确定的值,使得是等腰三角形.
试卷网 试题网 古诗词网 作文网 范文网
Copyright ©2020-2025 优题课 youtike.com 版权所有
粤ICP备20024846号