已知圆C过点(4,-1),且与直线相切于点
.
(Ⅰ)求圆C的方程;
(II)是否存在斜率为1的直线l,使得l被圆C截得弦AB,以AB为直径的圆经过原点,若存在,求出直线的方程;若不存在,请说明理由.
(满分13分)已知、
、
分别是
的三个内角
、
、
所对的边
(1)若面积
求
、
的值;
(2)若,且
,试判断
的形状.
(本小题满分14分)
(Ⅰ) 已知动点到点
与到直线
的距离相等,求点
的轨迹
的方程;
(Ⅱ) 若正方形的三个顶点
,
,
(
)在(Ⅰ)中的曲线
上,设
的斜率为
,
,求
关于
的函数解析式
;
(Ⅲ) 求(2)中正方形面积
的最小值。
(本小题满分14分)
已知函数.
(Ⅰ)若,求函数
的极值;
(Ⅱ)当时,不等式
恒成立,求实数
的取值范围。
(本小题满分14分)
已知:数列{}的前n项和为
,满足
=
(Ⅰ)证明数列{}是等比数列.并求数列{
}的通项公式
=?
(Ⅱ)若数列{}满足
=log2(
),而
为数列
的前n项和,求
=?
(本小题满分14分)
如右图,PA⊥平面ABCD,ABCD是矩形,PA=AB=1,∠PDA=30°,点F是PB的中点,
点E在边BC上,
(Ⅰ)若E为BC中点,证明:EF∥平面PAC;
(Ⅱ)证明:AF⊥平面PBC;
(Ⅲ)当BE等于何值时,二面角P—DE—A的大小为45°?