游客
题文

已知圆C过点(4,-1),且与直线相切于点.
(Ⅰ)求圆C的方程;
(II)是否存在斜率为1的直线l,使得l被圆C截得弦AB,以AB为直径的圆经过原点,若存在,求出直线的方程;若不存在,请说明理由.

科目 数学   题型 解答题   难度 较易
知识点: 圆的方程的应用
登录免费查看答案和解析
相关试题

(本小题满分15分)如图,已知圆Ox2+y2=2交x轴于AB两点,曲线C是以AB为长轴,离心率为的椭圆,其右焦点为F.若点P(-1,1)为圆O上一点,连结PF,过原点O作直线PF的垂线交椭圆C的右准线l于点Q.(1)求椭圆C的标准方程;
(2)证明:直线PQ与圆O相切.

(本小题满分15分)已知等差数列{an}中,首项a1=1,公差d为整数,且满足a1+3<a3a2+5>a4,数列{bn}满足,其前n项和为Sn.(1)求数列{an}的通项公式an;(2)若S2S1Sm(m∈N*)的等比中项,求正整数m的值.

(本小题满分16分)设为实数,函数.(1)若,求的取值范围;(2)求的最小值;(3)设函数,求不等式的解集.

(本小题满分16分)某连锁分店销售某种商品,每件商品的成本为4元,并且每件商品需向总店交a元(1≤a≤3)的管理费,预计当每件商品的售价为元(8≤x≤9)时,一年的销售量为(10-x)2万件.(1)求该连锁分店一年的利润L(万元)与每件商品的售价x的函数关系式L(x);
(2)当每件商品的售价为多少元时,该连锁分店一年的利润L最大,并求出L的最大值M(a).

正三棱柱ABCA1B1C1的底面边长为a,侧棱长为a.
(1)建立适当的坐标系,并写出ABA1C1的坐标;
(2)求AC1与侧面ABB1A1所成的角.

Copyright ©2020-2025 优题课 youtike.com 版权所有

粤ICP备20024846号