(本小题满分14分) 对于函数f(x),若存在x0∈R,使f(x0)=x0成立, 则称x0为f(x)的不动点. 已知函数f(x)=ax2+(b+1)x+b-1(a≠0)
(1)当a=1,b=-2时,求f(x)的不动点;
(2)若对于任意实数b,函数f(x)恒有两个相异的不动点,求a的取值范围
已知⊙和点
.
(Ⅰ)过点向⊙
引切线
,求直线
的方程;
(Ⅱ)求以点为圆心,且被直线
截得的弦长为4的⊙
的方程;
(Ⅲ)设为(Ⅱ)中⊙
上任一点,过点
向⊙
引切线,切点为
. 试探究:平面内是否存在一定点
,使得
为定值?若存在,请举出一例,并指出相应的定值;若不存在,请说明理由.
设二次函数满足下列条件:
①当时,
的最小值为0,且
恒成立;
②当时,
恒成立.
(I)求的值;
(Ⅱ)求的解析式;
(Ⅲ)求最大的实数m(m>1),使得存在实数t,只要当时,就有
成立
建造一条防洪堤,其断面为等腰梯形,腰与底边成角为(如图),考虑到防洪堤坚固性及石块用料等因素,设计其断面面积为
平方米,为了使堤的上面与两侧面的水泥用料最省,则断面的外周长(梯形的上底线段
与两腰长的和)要最小.
(1)求外周长的最小值,并求外周长最小时防洪堤高h为多少米?
(2)如防洪堤的高限制在的范围内,外周长最小为多少米?
已知函数在点
处的切线方程为
(1)求函数的解析式;
(2)若对于区间[-2,2]上任意两个自变量的值都有
求实数c的最小值.
已知向量
(1)当时,求
的值;
(2)设函数,求
的单调增区间;
(3)已知在锐角中,
分别为角
的对边,
,对于(2)中的函数
,求
的取值范围。