某商场销售某种商品的经验表明,该商品每日的销售量y(单位:千克)与销售价格x(单位:元/千克)满足关系式,其中3<x<6,a为常数,已知销售价格为5元/千克时,每日可售出
该商品11千克。(I)
求a的值;
(II)若该商品的成本为3元/千克,试确定销售价格x的值,使商场每日销售该商品所获得的利润最大。
设集合A为函数y=ln(-x2-2x+8)的定义域,集合B为函数y=x+的值域,集合C为不等式(ax-
)(x+4)≤0的解集. (1)求A∩B; (2)若C⊆∁RA,求a的取值范围.
已知命题:方程
在[-1,1]上有解;命题
:只有一个实数
满足不等式
,若命题“p或q”是假命题,求实数a的取值范围.
(12分)如图,为半圆,AB为半圆直径,O为半圆圆心,且OD⊥AB,Q为线段OD的中点,已知|AB|=4,曲线C过Q点,动点P在曲线C上运动且保持|PA|+|PB|的值不变.
(1)建立适当的平面直角坐标系,求曲线C的方程;
(2)过D点的直线l与曲线C相交于不同的两点M、N,且M在D、N之间,设
=λ,求λ的取值范围.
双曲线(a>1,b>0)的焦距为2c,直线
过点(a,0)和(0,b),且点(1,0)到直线
的距离与点(-1,0)到直线
的距离之和s≥
c.求双曲线的离心率e的取值范围.
假设关于某市房屋面积(平方米)与购房费用
(万元),有如下的统计数据:
x(平方米) |
80 |
90 |
100 |
110 |
y(万元) |
42 |
46 |
53 |
59 |
由资料表明对
呈线性相关。
(1)求回归直线方程;
(2)若在该市购买120平方米的房屋,估计购房费用是多少?
公式: