(本小题12分)
如图,中,
,
.它的顶点
的坐标为
,顶点
的坐标为
,点
从点
出发,沿
的方向匀速运动,同时点
从点
出发,沿
轴正方向以相同速度运动,当点
到达点
时,两点同时停止运动,设运动的时间为
秒.
(1)求的度数.(直接写出结果)
(2)当点在
上运动时,
的面积
与时间
(秒)之间的函数图象为抛物线的一部分(如图),求点
的运动速度.
(3)求题(2)中面积与时间
之间的函数关系式,及面积
取最大值时点
的坐标.
(4)如果点保持题(2)中的速度不变,当t取何值时,PO=PQ,请说明理由.
我市自开展“学习新思想,做好接班人”主题阅读活动以来,受到各校的广泛关注和同学们的积极响应,某校为了解全校学生主题阅读的情况,随机抽查了部分学生在某一周主题阅读文章的篇数,并制成下列统计图表.
某校抽查的学生文章阅读的篇数统计表
文章阅读的篇数(篇 |
3 |
4 |
5 |
6 |
7及以上 |
人数(人 |
20 |
28 |
|
16 |
12 |
请根据统计图表中的信息,解答下列问题:
(1)求被抽查的学生人数和 的值;
(2)求本次抽查的学生文章阅读篇数的中位数和众数;
(3)若该校共有800名学生,根据抽查结果,估计该校学生在这一周内文章阅读的篇数为4篇的人数.
已知抛物线 与 轴有两个不同的交点.
(1)求 的取值范围;
(2)若抛物线 经过点 和点 ,试比较 与 的大小,并说明理由.
化简: .
计算: .
如图,已知锐角三角形 内接于圆 , 于点 ,连接 .
(1)若 ,
①求证: .
②当 时,求 面积的最大值.
(2)点 在线段 上, ,连接 ,设 , , 是正数),若 ,求证: .