(本小题满分12分)某中学生物兴趣小组在学校生物园地种植了一批名贵树苗,为了解树苗的生长情况,从这批树苗中随机地测量了其中50棵树苗的高度(单位:厘米),并把这些高度列成了如下的频数分布表:
(1)在这批树苗中任取,其高度在85厘米以上的大约有多少棵;
(2)这批树苗的平均高度大约是多少?(计算时可以用组中值代替各组数据的平均值);
(3)为了进一步获得研究资料,若从组中移出一棵树苗,从
组中移出两棵树苗进行试验研究,则
组中的树苗A和
组中的树苗C同时被移出的概率是多少?
如图,已知四棱锥P—ABCD,侧面PAD为边长等于2的正三角形,底面ABCD为菱形,.
(I)证明:;
(II)若PB = 3,求四棱锥P—ABCD的体积.
已知函数
(Ⅰ)求函数的单调递增区间;
(Ⅱ)设的内角
对边分别为
,且
,
,
若,求
的值.
设函数.
(I )求不等式的解集;
(II)若,求实数
的取值范围.
已知直线l的参数方程为(t为参数),曲线C的参数方程为
为参数).
(I )已知在极坐标系(与直角坐标系xOy取相同的长度单位,且以原点O为极点,以x轴正半轴为极轴)中,点P的极坐标为(4,),判断点P与直线l的位置关系;
(II )设点Q是曲线C上的一个动点,求点Q到直线l的距离的最小值与最大值.
如图,四边形ABCD是的内接四边形,延长BC,AD交于点E,且CE=AB=AC,连接BD,交AC于点F.
(I)证明:BD平分;
(II)若AD=6,BD=8,求DF的长.