游客
题文

(满分l4分)如图,点P是双曲线y=(k1<0,x<0)上一动点,过点P作x轴,y轴的垂线,分别交x轴,y轴于A,B两点,交双曲线y= (0<k2<︱k1︱)于E,F两点.
(1)图①中,四边形PEOF 的面积S1=__________(用含k1,k2的式子表示);
(2)图②中,设点P坐标为(-4,3).
①判断EF与AB的位置关系,并证明你的结论;
②记S2=S△PEF-S△OEF,S2是否有最小值?若有,求出其最小值;若没有,请说明理由

科目 数学   题型 解答题   难度 较难
知识点: 相似多边形的性质
登录免费查看答案和解析
相关试题

ΔABC 在边长为1的正方形网格中如图所示.

①以点 C 为位似中心,作出 ΔABC 的位似图形△ A 1 B 1 C ,使其位似比为 1:2 .且△ A 1 B 1 C 位于点 C 的异侧,并表示出 A 1 的坐标.

②作出 ΔABC 绕点 C 顺时针旋转 90° 后的图形△ A 2 B 2 C

③在②的条件下求出点 B 经过的路径长.

如图,等腰直角三角板如图放置.直角顶点 C 在直线 m 上,分别过点 A B AE 直线 m 于点 E BD 直线 m 于点 D

①求证: EC=BD

②若设 ΔAEC 三边分别为 a b c ,利用此图证明勾股定理.

已知实数 x y 满足 x - 3 + y 2 -4y+4=0 ,求代数式 x 2 - y 2 xy · 1 x 2 - 2 xy + y 2 ÷ x x 2 y - x y 2 的值.

计算 ( - 1 2 ) 2 + ( 3 - π ) 0 +| 3 -2|+2sin60°- 8

如图,在平面直角坐标系中,抛物线 y=a x 2 +bx+c 经过原点 O ,顶点为 A(2,-4)

(1)求抛物线的函数解析式;

(2)设点 P 为抛物线 y=a x 2 +bx+c 的对称轴上的一点,点 Q 在该抛物线上,当四边

OAQP 为菱形时,求出点 P 的坐标;

(3)在(2)的条件下,抛物线 y=a x 2 +bx+c 在第一象限的图象上是否存在一点 M ,使得点 M 到直线 OP 的距离与其到 x 轴的距离相等?若存在,求出直线 OM 的函数解析式;若不存在,请说明理由.

Copyright ©2020-2025 优题课 youtike.com 版权所有

粤ICP备20024846号