游客
题文

心理学家发现,学生的接受能力依赖于老师引入概念和描述问题所用的时间,上课开始时,学生的兴趣激增,中间有一段不太长的时间,学生的兴趣保持较理想的状态,随后学生的注意力开始分散,并趋于稳定.分析结果和实验表明,设提出和讲述概念的时间为(单位:分),学生的接受能力为值越大,表示接受能力越强),
  
(1)开讲后多少分钟,学生的接受能力最强?能维持多少时间?
(2)试比较开讲后5分钟、20分钟、35分钟,学生的接受能力的大小;
(3)若一个数学难题,需要56的接受能力以及12分钟时间,老师能否及时在学生一直达到所需接受能力的状态下讲述完这个难题?

科目 数学   题型 解答题   难度 中等
登录免费查看答案和解析
相关试题

选修4-1:几何证明选讲
如图,的直径,相切于为线段上一点,连接分别交两点,连接于点

(Ⅰ)求证:四点共圆;
(Ⅱ)若的三等分点且靠近,求线段的长.

已知
(1)求的单调区间;
(2)令,则时有两个不同的根,求的取值范围;
(3)存在,使成立,求的取值范围.

已知椭圆的下顶点为P(0,-1),到焦点的距离为
(Ⅰ)设Q是椭圆上的动点,求的最大值;
(Ⅱ)若直线与圆O:x2+y2=1相切,并与椭圆交于不同的两点A、B.当,且满足时,求AOB面积S的取值范围.

如图,三棱柱中,平面, 点在线段上,且

(Ⅰ)求证:直线与平面不平行;
(Ⅱ)设平面与平面所成的锐二面角为,若,求的长;
(Ⅲ)在(Ⅱ)的条件下,设平面平面,求直线所成的角的余弦值.

已知数列的前项和为,且
(1)求的通项公式;
(2)设,若恒成立,求实数的取值范围;
(3)设,是数列的前项和,证明

Copyright ©2020-2025 优题课 youtike.com 版权所有

粤ICP备20024846号