(本小题满分12分)某人以12.1万元购买了一辆汽车用于上班,每年用于保险费和汽油费共0.9万元,汽车的维修费为:第一年0.2万元,第二年0.4万元,第三年0.6万元,……,依等差数列逐年递增.
(Ⅰ)设使用n年该车的总费用(包括购车费用)为f(n),试写出f(n)的表达式;
(Ⅱ)求这种汽车使用多少年报废最合算(即该车使用多少年平均费用最少)。
如图,金砂公园有一块边长为2的等边△ABC的边角地,现修成草坪,图中DE把草坪分成面积相等的两部分,D在AB上,E在AC上.
(Ⅰ)设AD=,DE=
,求
关于
的函数关系式;
(Ⅱ)如果DE是灌溉水管,我们希望它最短,则DE的位置应在哪里?
请予以证明.
若关于的实系数方程
有两个根,一个根在区间
内,另一根在区间
内,记点
对应的区域为
.
(1)设,求
的取值范围;
(2)过点的一束光线,射到
轴被反射后经过区域
,求反射光线所在直线
经过区域
内的整点(即横纵坐标为整数的点)时直线
的方程.
如图3所示,,M是棱
的中点,N是棱
的中点.
(1)求异面直线所成角的正弦值;
(2)求的体积.
为了对某课题进行研究,用分层抽样方法从三所高校A,B,C的相关人员中,抽取若干人组成研究小组、有关数据见下表(单位:人)
(1)求x,y ;
(2)若从高校B、C抽取的人中选2人作专题发言,求这二人都来自高校C的概率。
在中,角
、
、
所对的边分别为
、
、
.若
,
.(1)求
和
的值;(2)若
,求
的面积.