(本小题满分12分) 如图,A,B,C是三个汽车站,AC,BE是直线型公路.已知AB=120 km,∠BAC=75°,∠ABC=45°.有一辆车(称甲车)以每小时96(km)的速度往返于车站A,C之间,到达车站后停留10分钟;另有一辆车(称乙车)以每小时120(km)的速度从车站B开往另一个城市E,途经车站C,并在车站C也停留10分钟.已知早上8点时甲车从车站A、乙车从车站B同时开出.
(1)计算A,C两站距离,及B,C两站距离;(2)若甲、乙两车上各有一名旅客需要交换到对方汽车上,问能否在车站C处利用停留时间交换.(3)求10点时甲、乙两车的距离.(可能用到的参考数据:
,
,
,
)
设是函数
的一个极值点。
(1)求与
的关系式(用
表示
),并求
的单调区间;
(2)设,若存在
,使得
成立,求实数
的取值范围。
过点的直线
交直线
于
,过点
的直线
交
轴于
点,
,
.
(1)求动点的轨迹
的方程;
(2)设直线l与相交于不同的两点
、
,已知点
的坐标为(-2,0),点Q(0,
)在线段
的垂直平分线上且
≤4,求实数
的取值范围.
已知.
(1)已知函数h(x)=g(x)+ax3的一个极值点为1,求a的取值;
(2) 求函数在
上的最小值;
(3)对一切,
恒成立,求实数a的取值范围.
已知函数是定义在
上的偶函数,且当
时,
.现已画出函数
在
轴左侧的图像,如图所示,并根据图像
(1)写出函数的增区间;
(2)写出函数的解析式;
(3)若函数,求函数
的最小值。
已知函数
(1)设方程在(0,
)内有两个零点
,求
的值;
(2)若把函数的图像向左移动
个单位,再向下平移2个单位,使所得函数的图象关于
轴对称,求
的最小值。