游客
题文

(本小题满分13分)(第一问8分,第二问5分)
已知函数f(x)=2lnxg(x)=ax2+3x.
(1)设直线x=1与曲线yf(x)和yg(x)分别相交于点PQ,且曲线yf(x)和yg(x)在点PQ处的切线平行,若方程f(x2+1)+g(x)=3xk有四个不同的实根,求实数k的取值范围;
(2)设函数F(x)满足F(x)+xf′(x)-g′(x)]=-3x2-(a+6)x+1.其中f′(x),g′(x)分别是函数f(x)与g(x)的导函数;试问是否存在实数a,使得当x∈(0,1]时,F(x)取得最大值,若存在,求出a的取值范围;若不存在,说明理由.

科目 数学   题型 解答题   难度 较易
登录免费查看答案和解析
相关试题

(本小题满分14分)如图,四边形为矩形,平面,平面于点,且点上,点是线段的中点。
(1)求证:
(2)求三棱锥的体积;
(3)试在线段上确定一点,使得平面

(本小题满分12分)已知圆轴相切,圆心在直线上,且被直线截得的弦长为,求圆的方程

、(本小题满分12分)某市统计局就某地居民的月收入调查了10000人,他们的月收入均在内.现根据所得数据画出了该样本的频率分布直方图如下.(每个分组包括左端点,不包括右端点,如第一组表示月收入在内)
(1)求某居民月收入在内的频率;
(2)根据该频率分布直方图估计居民的月收入的中位数;
(3)为了分析居民的月收入与年龄、职业等方面的关系,需再从这10000人中利用分层抽样的方法抽取100人作进一步分析,则应从月收入在内的居民中抽取多少人?

已知函数的最小值为.
(1)求
(2)若及此时的最大值.(12分)

设函数图象的一条对称轴是直线.

(1)求的值;
(2)求函数的单调递增区间;
(3)在下图中画出函数在区间上的图像.(12分)

Copyright ©2020-2025 优题课 youtike.com 版权所有

粤ICP备20024846号