(本小题满分12分)一个袋子中有红、白、蓝三种颜色的球共24个,除颜色外完全相同,已知蓝色球3个. 若从袋子中随机取出1个球,取到红色球的概率是.(1)求红色球的个数;(2)若将这三种颜色的球分别进行编号,并将1号红色球,1号白色球,2号蓝色球和3号蓝色球这四个球装入另一个袋子中,甲乙两人先后从这个袋子中各取一个球(甲先取,取出的球不放回),求甲取出的球的编号比乙的大的概率.
如图在四棱锥中,底面是边长为的正方形,侧面底面,且. (1)求证:面平面; (2)求二面角的余弦值.
已知等差数列的首项,公差.且分别是等比数列的. (1)求数列与的通项公式; (2)设数列对任意自然数均有成立,求的值.
在△ABC中,角A,B,C的对边分别为a,b,c,且. (1)求角C的大小; (2)求的最大值.
已知点(1,)是函数且)的图象上一点,等比数列的前项和为,数列的首项为,且前项和满足-=+(). (1)求数列和的通项公式; (2)求数列{前项和为.
已知函数,且方程有两个实根为. (1)求函数的解析式 ; (2)设,解关于x的不等式:.
试卷网 试题网 古诗词网 作文网 范文网
Copyright ©2020-2025 优题课 youtike.com 版权所有
粤ICP备20024846号