如图,点为
轴正半轴上一点,
两点关于
轴对称,过点
任作直线交抛物线
于
,
两点
(1)求证:∠=∠
;
(2)若点的坐标为(0,1),且∠
=60º,试求所有满足条件的直线
的函数解析式.
如图,在等腰梯形ABCD中,AD=4,BC=9,∠B=45°.动点P从点B出发沿BC向点C运动,动点Q同时以相同速度从点C出发沿CD向点D运动,其中一个动点到达端点时,另一个动点也随之停止运动.
(1)求AB的长;
(2)设BP=x,问当x为何值时△PCQ的面积最大,并求出最大值;
(3)探究:在AB边上是否存在点M,使得四边形PCQM为菱形?请说明理由.
已知等腰梯形ABCD中,AD∥BC,∠B=45°,AD=2-2.动点P在折线BA-AD-DC上移动,若存在∠BPC=120°,且这样的P点恰好出现3次,求梯形ABCD的面积。
如图所示,在梯形ABCD中,AD∥BC,AB=AD,∠BAD的平分线AE交BC于点E,连接DE.
(1)求证:四边形ABED是菱形;
(2)若∠ABC=60°,CE=2BE,试判断△CDE的形状,并说明理由.
如图,在梯形ABCD中,AD∥BC,AD=AB,过点A作AE∥DB交CB的延长线于点E.
(1)求证:∠ABD=∠CBD;
(2)若∠C=2∠E,求证:AB=DC;
(3)在(2)的条件下,,求四边形AEBD的面积.
在梯形ABCD中,AD∥BC,对角线AC、BD相交于点O,AD=2,BC=BD=3,AC=4.
(1)求证:AC⊥BD
(2)求△AOB的面积