已知向量共线,且有函数
(1)求函数的周期及最大值;
(2)已知锐角中的三个内角分别为A、B、C,若有
,边
,
,求的
的面积。
如图,在四棱锥P-ABCD中,PA⊥面ABCD,AB=BC=2, AD=CD=,PA=
,∠ABC=120°,G为线段PC上的点
(Ⅰ)证明:BD⊥面PAC
(Ⅱ)若G是PC的中点,求DG与APC所成的角的正切值
(Ⅲ)若G满足PC⊥面BGD,求的值.
已知函数
(1)求的最小正周期
(2)在中,
分别是
A、
B、
C的对边,若
,
,
的面积为
,求
的值
(本小题满分14分)设函数f(x)=(x–1)2+alnx,a∈R.
(Ⅰ)若曲线y=f(x)在点(1,f(1))处的切线与直线x+2y–1=0垂直,求a的值;
(Ⅱ)求函数f(x)的单调区间;
(Ⅲ)若函数f(x)有两个极值点x1,x2且x1<x2,求证:f(x2)>–
ln2.
(本小题满分14分)已知椭圆C:(a>b>0)与y轴的交点为A,B(点A位于点B的上方),F为左焦点,原点O到直线FA的距离为
b.
(Ⅰ)求椭圆C的离心率;
(Ⅱ)设b=2,直线y=kx+4与椭圆C交于不同的两点M,N,求证:直线BM与直线AN的交点G在定直线上.
(本小题满分13分)设数列{an}满足:a1=1,an+1=3an,n∈N*.设Sn为数列{bn}的前n项和,已知b1≠0,2bn–b1=S1•Sn,n∈N*.
(Ⅰ)求数列{an},{bn}的通项公式;
(Ⅱ)设cn=bn•log3an,求数列{cn}的前n项和Tn.