已知奇函数
(1)求实数的值,并在给出的直角坐标系中画出
的图象;
(2)若函数在区间
上单调递增,试确定实数
的取值范围.
(本小题满分14分)已知数列的各项均为正数,其前
项和为
,且满足
,
N
.
(1)求的值;
(2)求数列的通项公式;
(3)是否存在正整数, 使
,
,
成等比数列? 若存在, 求
的值; 若不存在, 请说明理由.
(本小题满分14分)如图,在边长为的菱形
中,
,点
,
分别是边
,
的中点,
,沿
将△
翻折到△
,连接
,得到如图的五棱锥
,且
.
(1)求证:平面
;
(2)求二面角的正切值.
(本小题满分12分)袋子中装有大小相同的白球和红球共个,从袋子中任取
个球都是白球的概率为
,每个球被取到的机会均等.现从袋子中每次取
个球,如果取出的是白球则不再放回,设在取得红球之前已取出的白球个数为
.
(1)求袋子中白球的个数;
(2)求的分布列和数学期望.
(本小题满分12分)已知函数的图象在
轴右侧的第一个最高点和第一个最低点的坐标分别为
和
.
(1)求函数的解析式;
(2)求的值.
已知函数,其中常数
.
(1)求的单调增区间与单调减区间;
(2)若存在极值且有唯一零点
,求
的取值范围及不超过
的最大整数
.