游客
题文

(本小题满分14分)
已知函数是奇函数,且满足
(Ⅰ)求实数的值;
(Ⅱ)试证明函数在区间单调递减,在区间单调递增;
(Ⅲ)是否存在实数同时满足以下两个条件:①不等式恒成立;
②方程上有解.若存在,试求出实数的取值范围,若不存在,请说明理由.

科目 数学   题型 解答题   难度 容易
登录免费查看答案和解析
相关试题

计算:⑴ ;⑵

已知函数),
(Ⅰ)证明:当时,对于任意不相等的两个正实数,均有成立;
(Ⅱ)记,若上单调递增,求实数的取值范围;

已知抛物线的顶点在坐标原点,焦点为,点是点关于轴的对称点,过点的直线交抛物线于两点。
(Ⅰ)试问在轴上是否存在不同于点的一点,使得轴所在的直线所成的锐角相等,若存在,求出定点的坐标,若不存在说明理由。
(Ⅱ)若的面积为,求向量的夹角;

已知为等比数列,是等差数列,
(Ⅰ)求数列的通项公式及前项和
(2)设,其中,试比较的大小,并加以证明.

如图,直三棱柱ABC-A1B1C1中,D,E分别是AB,BB1的中点

(Ⅰ)证明:BC1//平面A1CD;
(Ⅱ)设AA1=AC=CB=2,AB=,求三棱锥C一A1DE的体积.

Copyright ©2020-2025 优题课 youtike.com 版权所有

粤ICP备20024846号