(本小题满分14分)
已知函数是奇函数,且满足
(Ⅰ)求实数、
的值;
(Ⅱ)试证明函数在区间
单调递减,在区间
单调递增;
(Ⅲ)是否存在实数同时满足以下两个条件:①不等式
对
恒成立;
②方程在
上有解.若存在,试求出实数
的取值范围,若不存在,请说明理由.
计算:⑴ ;⑵
.
已知函数(
,
),
.
(Ⅰ)证明:当时,对于任意不相等的两个正实数
、
,均有
成立;
(Ⅱ)记,若
在
上单调递增,求实数
的取值范围;
已知抛物线的顶点在坐标原点,焦点为,点
是点
关于
轴的对称点,过点
的直线交抛物线于
两点。
(Ⅰ)试问在轴上是否存在不同于点
的一点
,使得
与
轴所在的直线所成的锐角相等,若存在,求出定点
的坐标,若不存在说明理由。
(Ⅱ)若的面积为
,求向量
的夹角;
已知为等比数列,
是等差数列,
(Ⅰ)求数列的通项公式及前
项和
;
(2)设,
,其中
,试比较
与
的大小,并加以证明.
如图,直三棱柱ABC-A1B1C1中,D,E分别是AB,BB1的中点
(Ⅰ)证明:BC1//平面A1CD;
(Ⅱ)设AA1=AC=CB=2,AB=,求三棱锥C一A1DE的体积.