(本小题满分12分)
已知椭圆的中心在坐标原点,焦点在
轴上,椭圆的短轴端点和焦点所组成的四边形为正方形,短轴长为2.
(Ⅰ)求椭圆的方程;
(Ⅱ)设直线过
且与椭圆相交于A,B两点,当P是AB的中点时,
求直线的方程.
如图1,在Rt中,
,
,D、E分别是
上的点,且
,将
沿
折起到
的位置,使
,如图2.
(Ⅰ)求证:平面平面
;
(Ⅱ)若,求
与平面
所成角的余弦值;
(Ⅲ)当点在何处时,
的长度最小,并求出最小值.
在数列中,
为常数,
,且
成公比不等于1的等比数列.
(Ⅰ)求的值;
(Ⅱ)设,求数列
的前
项和
.
已知函数的图像上两相邻最高点的坐标分别为
.
(Ⅰ)求的值;
(Ⅱ)在△ABC中,分别是角A,B,C的对边,且
求
的取值范围.
已知数列具有性质:①
为整数;②对于任意的正整数
,当
为偶数时,
;当
为奇数时,
.
(1)若为偶数,且
成等差数列,求
的值;
(2)设(
且
N),数列
的前
项和为
,求证:
;
(3)若为正整数,求证:当
(
N)时,都有
.
设抛物线的焦点为
,经过点
的动直线
交抛物线
于点
,
且
.
(1)求抛物线的方程;
(2)若(
为坐标原点),且点
在抛物线
上,求直线
倾斜角;
(3)若点是抛物线
的准线上的一点,直线
的斜率分别为
.求证:
当为定值时,
也为定值.