(本题满分15分)已知函数f(x)=(2-a)(x-1)-2lnx,,其中a∈R,
(1)求f(x)的单调区间;
(2)若函数f(x)在(0,)上无零点,求a的取值范围.
(本小题满分14分)在△ABC中,角A,B,C所对的边分别为a,b,c,已知
(1)当c=1,且△ABC的面积为的值;
(2)当的值。
已知椭圆 的中心在原点,焦点在轴 上,以两个焦点和短轴的两个端点为顶点的四边形是一个面积为8的正方形(记为 ).
(Ⅰ)求椭圆
的方程;
(Ⅱ)设点
是椭圆
的左准线与
轴的交点,过点
的直线
与椭圆
相交于
,
两点,当线段
的中点落在正方形
内(包括边界)时,求直线
的斜率的取值范围。
已知函数,其中
若
在x=1处取得极值,求a的值;
求
的单调区间;
(Ⅲ)若的最小值为1,求a的取值范围。
在数列中,
(I)设,求数列
的通项公式
(II)求数列的前
项和
已知等腰梯形PDCB中,PB=3,DC=1,PD=BC=,A为PB边上一点,且PA=1,将△PAD沿AD折起,使面PAD⊥面ABCD.
(Ⅰ)证明:平面PAD⊥平面PCD;
(Ⅱ)试在棱PB上确定一点M,使截面AMC
把几何体分成的两部分.