(本小题满分12分)
某厂生产某种产品的年固定成本为250万元,每生产x千件,需另投入成本为C(x),当年产量不足80千件时,C(x)=x2+10x(万元);当年产量不小于80千件时,C(x)=51x+-1450(万元).通过市场分析,若每件售价为500元时,该厂当年生产的该产品能全部销售完.
(1)写出年利润L(x)(万元)关于年产量x(千件)的函数解析式;
(2)年产量为多少千件时,该厂在这一产品的生产中所获利润最大,最大利润是多少?
在中,
分别是角A,B,C的对边,且满足
.
(1)求角B的大小;
(2)若最大边的边长为
,且
,求最小边长.
已知椭圆C的焦点分别为和
,长轴长为6,设直线
交椭圆C于A、B两点,求线段AB的中点坐标.
已知命题:“不等式
对任意
恒成立”,命题
:“方程
表示焦点在x轴上的椭圆”,若
为真命题,
为真,求实数
的取值范围.
已知双曲线的两条渐近线与抛物线
的准线分别交于A, B两点, O为坐标原点.若双曲线的离心率为2,△AOB的面积为
.
(1)求抛物线的方程;
(2)过点的直线
与抛物线
交于不同的两点
,若在
轴上存在一点
使得
是等边三角形,求
的值.
若函数f(x)=ax2+2x-ln x在x=1处取得极值.
(1)求a的值;
(2)求函数f(x)的单调区间及极值.