(本小题满分12分)
某厂生产某种产品的年固定成本为250万元,每生产x千件,需另投入成本为C(x),当年产量不足80千件时,C(x)=x2+10x(万元);当年产量不小于80千件时,C(x)=51x+-1450(万元).通过市场分析,若每件售价为500元时,该厂当年生产的该产品能全部销售完.
(1)写出年利润L(x)(万元)关于年产量x(千件)的函数解析式;
(2)年产量为多少千件时,该厂在这一产品的生产中所获利润最大,最大利润是多少?
有两枚大小相同、质地均匀的正四面体玩具,每个玩具的各个面上分别写着数字1,2,3,5。同时投掷这两枚玩具一次,记为两个朝下的面上的数字之和。
(Ⅰ)求事件“m不小于6”的概率;
(Ⅱ)“m为奇数”的概率和“m为偶数”的概率是不是相等?证明你作出的结论。
如图,是底部
不可到达的一个塔型建筑物,
为塔的最高点.现需在塔对岸测出塔高
, 甲、乙两同学各提出了一种测量方法,甲同学的方法是:选与塔底
在同一水平面内的一条基线
,使
不在同一条直线上,测出
及
的大小(分别用
表示测得的数据)以及
间的距离(用
表示测得的数据),另外需在点
测得塔顶
的仰角(用
表示测量的数据),就可以求得塔高
.乙同学的方法是:选一条水平基线
,使
三点在同一条直线上.在
处分别测得塔顶
的仰角(分别用
表示测得的数据)以及
间的距离(用
表示测得的数据),就可以求得塔高
.请从甲或乙的想法中选出一种测量方法,写出你的选择并按如下要求完成测量计算:①画出测量示意图;②用所叙述的相应字母表示测量数据,画图时
按顺时针方向标注,
按从左到右的方向标注;③求塔高
.
设不等式的解集是
,
.
(I)试比较与
的大小;
(II)设表示数集
的最大数.
,求证:
.
在平面直角坐标系中,曲线
的参数方程为
(
,
为参数),在以
为极点,
轴的正半轴为极轴的极坐标系中,曲线
是圆心在极轴上,且经过极点的圆.已知曲线
上的点
对应的参数
,射线
与曲线
交于点
.
(I)求曲线,
的方程;
(II)若点,
在曲线
上,求
的值.
如图,A,B,C,D四点在同一圆上,与
的延长线交于点
,点
在
的延长线上.
(Ⅰ)若,求
的值;
(Ⅱ)若,证明:
.