已知椭圆的中心在原点O,焦点在轴上,过右焦点F的直线与右准线交于点D,与椭圆交于A、B两点,右准线与
轴交于C点,若
成等差数列,且公差等于短轴长的
.(1)求椭圆的离心率; (2)若
的面积为
,求椭圆的方程.
设函数的定义域是
,对于任意的
,有
,且当
时,
.
(1)求的值;
(2)判断函数的奇偶性;
(3)用函数单调性的定义证明函数为增函数;
(4)若恒成立,求实数
的取值范围.
已知函数的周期为
.
(1)若,求它的振幅、初相;
(2)在给定的平面直角坐标系中作出该函数在的图像;
(3)当时,根据实数
的不同取值,讨论函数
的零点个数.
学校某研究性学习小组在对学生上课注意力集中情况的调查研究中,发现其在40分钟的一节课中,注意力指数与听课时间
(单位:分钟)之间的关系满足如图所示的图像,当
时,图像是二次函数图像的一部分,其中顶点
,过点
;当
时,图像是线段
,其中
,根据专家研究,当注意力指数大于62时,学习效果最佳.
(1)试求的函数关系式;
(2)教师在什么时段内安排内核心内容,能使得学生学习效果最佳?请说明理由.
已知向量与
,其中
.
(1)问向量能平行吗?请说明理由;
(2)若,求
和
的值;
(3)在(2)的条件下,若,求
的值.
知集合,集合
.
(1)当时,求
;
(2)若,求实数
的取值范围;
(3)若,求实数
的取值范围.