(本小题满分12分)
设函数
(I)用五点法画出它在一个周期内的闭区间上的图象;
(II)求函数f(x)的最小正周期及函数f(x)的最大值
(III)求函数f(x)的单调增区间。
如图,在四棱锥P-ABCD中,底面ABCD是矩形,侧棱PA垂直于底面,E、F分别是AB、PC的中点。
⑴求证:CD⊥PD;
⑵求证:EF∥平面PAD;
⑶若直线EF⊥平面PCD,求平面PCD与平面ABCD所成二面角的大小
设函数,其中向量
(Ⅰ)求的最小正周期;
(Ⅱ)在ΔABC中,角A、B、C所对的边分别为a、b、c,若,且
,求
与
的值。
已知等差数列中,
,前10项和
.
(1)求数列的通项公式;
(2)设,证明
为等比数列,并求
的前四项之和。
(3)设,求
的前五项之和。
(1)已知,
,求
的值;
(2)已知,且
,求
的值
设M是由满足下列条件的函数构成的集合:“①方
有实数根;②函数
的导数
满足
”
(I)证明:函数是集合M中的元素;
(II)证明:函数具有下面的性质:对于任意
,都存在
,使得等式
成立。