(本小题满分12分)
|
喜爱打篮球 |
不喜爱打篮球 |
合计 |
男生 |
|
5 |
|
女生 |
10 |
|
|
合计: |
|
|
50 |
为了解某班学生喜爱打篮球是否与性别有关,对本班50人进行了问卷调查得到了如下的列联表:
已知在全部50人中随机抽取1人抽到喜爱打篮球的学生的概率为.
(1)请将上面的列联表补充完整;
(2)是否有99.5%的把握认为喜爱打篮球与性别有关?说明你的理由;
(3)已知喜爱打篮球的10位女生中,还喜欢打羽毛球,
还喜欢打乒乓球,
还喜欢踢足球,现在从喜欢打羽毛球、喜欢打乒乓球、喜欢踢足球的8位女生中各选出1名进行其他方面的调查,求女生
和
不全被选中的概率.
下面的临界值表供参考:
![]() |
0.15 |
0.10 |
0.05 |
0.025 |
0.010 |
0.005 |
0.001 |
![]() |
2.072 |
2.706 |
3.841 |
5.024 |
6.635 |
7.879 |
10.828 |
(参考公式:,其中
.)
第十二届全国人民代表大会第二次会议和政协第十二届全国委员会第二次会议,2014年3月在北京召开.为了做好两会期间的接待服务工作,中国人民大学学生实践活动中心从7名学生会干部(其中男生4人,女生3人)中选3人参加两会的志愿者服务活动.
(1)所选3人中女生人数为,求
的分布列及数学期望:
(2)在男生甲被选中的情况下,求女生乙也被选中的概率.
己知函数
(1)当时,求函数
的最小值和最大值;
(2)设ABC的内角A,B,C的对应边分别为a,b,c,且c=
,f(C)=2,若向量m=(1,a)与向量n=(2,b)共线,求a,b的值.
若函数的图象与直线y=m相切,相邻切点之间的距离为
.
(1)求m和a的值;
(2)若点A(x0,y0)是y=f(x)图象的对称中心,且,求点A的坐标.
已知
(1)若,求x的范围;
(2)求的最大值以及此时x的值.
函数在
内只取到一个最大值和一个最小值,且当
时,
;当
时,
.(1)求此函数的解析式;(2)求此函数的单调递增区间.