游客
题文

由世界自然基金会发起的“地球1小时”活动,已发展成为最有影响力的环保活动之一,今年的参与人数再创新高。然而也有部分公众对该活动的实际效果与负面影响提出了疑问。对此,某新闻媒体进行了网上调查,所有参与调查的人中,持“支持”、“保留”和“不支持”态度的人数如下表所示:

 
支持
  保留
 不支持
20岁以下
     800
   450
   200
20岁以上(含20岁)
     100
   150
   300

⑴在所有参与调查的人中,用分层抽样的方法抽取n个人,已知从“支持”态度的人中抽取了45个人,求n的值;
⑵在持“不支持”态度的人中,用分层抽样的方法抽取5人看成一个总体,从这5人中
任意选取2人,求至少1人20岁以下的概率;
⑶在接受调查的人中,有8人给这项活动打出了分数如下:9.4, 8.6, 9.2, 9.6, 8.7
9.3, 9.0, 8.2.把这8人打出的分数看作一个总体,从中任取一个数,求该数与总体平均数之差的绝对值超过0.6的概率。

科目 数学   题型 解答题   难度 未知
登录免费查看答案和解析
相关试题

求函数y=(x>-1)的值域.

在平面直角坐标系xOy中,曲线C1的参数方程为(φ为参数),曲线C2的参数方程为(a>b>0,φ为参数),在以O为极点,x轴的正半轴为极轴的极坐标系中,射线l:θ=α与C1,C2各有一个交点.当α=0时,这两个交点间的距离为2,当α=时,这两个交点重合.
(1)分别说明C1,C2是什么曲线,并求出a与b的值.
(2)设当α=时,l与C1,C2的交点分别为A1,B1,当α=-时,l与C1,C2的交点为A2,B2,求四边形A1A2B2B1的面积.

已知椭圆C的极坐标方程为ρ2=,点F1,F2为其左、右焦点,直线l的参数方程为(t为参数,t∈R).
(1)求直线l和曲线C的普通方程.
(2)求点F1,F2到直线l的距离之和.

已知曲线C的极坐标方程为ρ2=,以极点为原点,极轴所在直线为x轴建立平面直角坐标系.
(1)求曲线C的直角坐标方程及参数方程.
(2)若P(x,y)是曲线C上的一个动点,求x+2y的最小值,并求P点的坐标.

求直线(t为参数)被圆(α为参数)截得的弦长.

Copyright ©2020-2025 优题课 youtike.com 版权所有

粤ICP备20024846号