如图,已知三棱柱的侧棱与底面垂直,
,
,
,
分别是
,
的中点,点
在直线
上,且
;
(Ⅰ)证明:无论取何值,总有
;
(Ⅱ)当取何值时,直线
与平面
所成的角
最大?并求该角取最大值时的正切值;
(Ⅲ)是否存在点,使得平面
与平面
所成的二面角为30º,若存在,试确定点
的位置,若不存在,请说明理由.
已知圆C:,直线L:
(1)求证:对m,直线L与圆C总有两个交点;
(2)设直线L与圆C交于点A、B,若|AB|=,求直线L的倾斜角;
(3)设直线L与圆C交于A、B,若定点P(1,1)满足,求此时直线L的方程.
如图,在直三棱柱中,
、
分别是
、
的中点,点
在
上,
。
求证:(1)EF∥平面ABC;
(2)平面平面
.
已知圆C过点(1,0),且圆心在轴的正半轴上,直线l:y=x-1被该圆所截得的弦长为2
,求圆C的标准方程.
高等数学中经常用到符号函数,符号函数的定义为,试编写算法,画出流程图,写出程序输入x的值,输出y的值。