已知椭圆C的左、右焦点坐标分别是,
,离心率是
,直线y=t与 椭圆C交与不同的两点M,N,以线段MN为直径作圆P,圆心为P。
(Ⅰ)求椭圆C的方程;
(Ⅱ)若圆P与x轴相切,求圆心P的坐标;
(Ⅲ)设Q(x,y)是圆P上的动点,当t变化时,求y的最大值。
某工厂生产一种仪器的元件,由于受生产能力和技术水平的限制,会产生一些次品,根据经验知道,其次品率P与日产量x(万件)之间大体满足关系:(其中c为小于6的正常数). (注:次品率=次品数/生产量,如P=0.1表示每生产10件产品,有1件为次品,其余为合格品),已知每生产1万件合格的元件可以盈利2万元,但每生产出1万件次品将亏损1万元,故厂方希望定出合适的日产量.
(1)试将生产这种仪器的元件每天的盈利额T(万元)表示为日产量x(万件)的函数;
(2)当日产量为多少时,可获得最大利润?
分已知向量,
,
,且
、
、
分别为
的三边
、
、
所对的角.
(1)求角C的大小;
(2)若,
,
成等差数列,且
,求
边的长.
已知等差数列满足:
,
,
的前n项和为
.
(Ⅰ)求及
;
(Ⅱ)令bn=(n
N*),求数列
的前n项和
.
)已知|a|=4,|b|=3,(2a-3b)·(2a+b)=61.
(1)求a与b的夹角θ;
(2)求|a+b|和|a-b|;
已知直线的方程为3x+4y-12=0,求满足下列条件的直线
的方程.
(1) ,且直线
过点(-1,3);
(2) ,且
与两坐标轴围成的三角形面积为4.