(本小题满分10)选修4-1:几何证明选讲
如图,过圆O外一点M作它的一条切线,切点为A,过A作直线AP垂直直线OM,垂足为P.
(1)证明:;
(2)N为线段AP上一点,直线NB垂直直线ON,且交圆O于B点。过B点的切
线交直线ON于K。证明:∠OKM = 90°.
已知函数
(Ⅰ)若函数恰好有两个不同的零点,求
的值。
(Ⅱ)若函数的图象与直线
相切,求
的值及相应的切点坐标。
已知,
是椭圆
左右焦点,它的离心率
,且被直线
所截得的线段的中点的横坐标为
(Ⅰ)求椭圆的标准方程;
(Ⅱ)设是其椭圆上的任意一点,当
为钝角时,求
的取值范围。
已知函数f(x)=cos(2x+)+
-
+
sinx·cosx
⑴ 求函数f(x)的单调减区间;⑵ 若xÎ[0,],求f(x)的最值;
⑶ 若f(a)=,2a是第一象限角,求sin2a的值.
在△ABC中,a、b、c分别是角A、B、C的对边,cosB=.
⑴ 若cosA=-,求cosC的值;⑵ 若AC=
,BC=5,求△ABC的面积.
⑴ 求-
的值;
⑵ 已知tana=3,求的值.