游客
题文

如图①,在正方形ABCD中,点E、F分别为边BC、CD的中点,AF、DE相交于点G,则可得结论:①AF=DE,②AF⊥DE。(不需要证明)

如图②,若点E、F不是正方形ABCD的边BC、CD的中点,但满足CE=DF。则上面的结论①、②是否仍然成立?(请直接回答“成立”或“不成立”)
如图③,若点E、F分别在正方形ABCD的边CB的延长线和DC的延长线上,且CE=DF,此时上面的结论①、②是否仍然成立?若成立,请写出证明过程;若不成立,请说明理由。
如图④,在(2)的基础上,连接AE和EF,若点M、N、P、Q分别为AE、EF、FD、AD的中点,请判断四边形MNPQ是“矩形、菱形、正方形、等腰梯形”中的哪一种?并写出证明过程。

科目 数学   题型 解答题   难度 较易
知识点: 圆内接四边形的性质
登录免费查看答案和解析
相关试题

在如图所示的方格纸中,每个小方格都是边长为1个单位的正方形,的三个顶点都在格点上(每个小方格的顶点叫格点),按要求画出下列图形(不写画法,保留作图痕迹).

(1)将△ABC向下平移4格后得△;(4分)
(2)再将△绕点O沿逆时针旋转90º得△.(4分)

计算(1) (2)

如图,直线AC∥BD,连结AB,直线AC、BD及线段AB把平面分成①、②、③、④四个部分,规定:线上各点不属于任何部分.当动点P落在某个部分时,连结PA、PB,构成∠PAC、∠APB、∠PBD三个角. (提示: 有公共端点的两条重合的射线所组成的角是0°)

(1)当动点P落在第①部分时,有∠APB=∠PAC+∠PBD,请说明理由;
(2)当动点P落在第②部分时,∠APB=∠PAC+∠PBD是否成立?若不成立,试写出∠PAC、∠APB、∠PBD三个角的关系(无需说明理由);
(3)当动点P在第③部分时,探究∠PAC、∠APB、∠PBD之间的关系,写出你发现的一个结论并加以说明.

小明学习了“第八章幂的运算”后做这样一道题:若,求的值,他解出来的结果为,老师说小明考虑问题不全面,聪明的你能帮助小明解决这个问题吗?小明解答过程如下:
解:因为1的任何次幂为1,所以.且
,所以
你的解答是:

如图,AD是△ABC的高,BE平分∠ABC交AD于E,若∠C=70o,∠BED=64o,(1)求∠DBE的度数;(2)求∠BAC的度数.

Copyright ©2020-2025 优题课 youtike.com 版权所有

粤ICP备20024846号