(本小题满分14分)给定函数
(1)试求函数的单调减区间;
(2)已知各项均为负的数列满足,
求证:
;
(3)设,
为数列
的前
项和,求证:
。
(本题满分14分)
已知向量,
(其中
为正常数)
(Ⅰ)若,求
时
的值;
(Ⅱ)设,若函数
的图像的相邻两个对称中心的距离为
,求
在区间
上的最小值。
(1)(本小题满分7分)
选修4-4:矩阵与变换
已知矩阵,A的一个特征值
,其对应的特征向量是
.
(Ⅰ)求矩阵;
(Ⅱ)求直线在矩阵M所对应的线性变换下的像的方程
(2)
(本小题满分7分)选修4-4:坐标系与参数方程
已知曲线C的极坐标方程是.以极点为平面直角坐标系的原点,极轴为x轴的正半轴,建立平面直角坐标系,直线l的参数方程是:
,
求直线l与曲线C相交所成的弦的弦长.
((3)(本小题满分7分)
选修4-5:不等式选讲解不等式∣2x-1∣<∣x∣+1
(本小题满分14分)
已知函数(a为常数)是R上的奇函数,函数
是区间[-1,1]上的减函数.
(I)求a的值;
(II)若上恒成立,求t的取值范围;
(III)讨论关于x的方程解的情况,并求出相应的m的取值范围.
(本小题满分13分)
如图,ABCD是块矩形硬纸板,其中AB=2AD= 2,E为DC中点,将它沿AE折成直二面角D-AE-B.
(Ⅰ)求证:AD⊥平面BDE;
(Ⅱ)求二面角B-AD-E的余弦值.
(本小题满分13分)
某班从6名班干部(其中男生4人,女生2人)中选3人参加学校学生会的干部竞选.
(Ⅰ)设所选3人中女生人数为,求
的分布列及数学期望
;
(Ⅱ)在男生甲被选中的情况下,求女生乙也被选中的概率.