已知数列的前项和
(1)求数列的通项公式;
(2)设,求
.
(本小题满分14分)
给定椭圆:
,称圆心在坐标原点
,半径为
的圆是椭圆
的“伴随圆”. 已知椭圆
的两个焦点分别是
,椭圆
上一动点
满足
.
(Ⅰ)求椭圆
及其“伴随圆”的方程;
(Ⅱ) 过点P
作直线
,使得直线
与椭圆
只有一个交点,且
截椭圆
的“伴随圆”所得的弦长为
.求出
的值.
.(本小题满分14分)
直棱柱 中,底面 ABCD是直角梯形,∠ BAD=∠ ADC=90°,
.
(Ⅰ)求证: AC⊥平面 BB 1 C 1 C;
(Ⅱ)若P为 A 1 B 1的中点,求证: DP∥平面 BCB 1,且 DP∥平面 ACB 1.
(本小题满分12分)
某班t名学生在2011年某次数学测试中,成绩全部介于80分与130分之间,将测试结果按如下方式分成五组,第一组[80,90);第二组[90,100)…第五组
[120,130],下表是按上述分组方法得到的频率分布表:
分组 |
频数 |
频率 |
[80,90) |
x |
0.04 |
![]() |
9 |
y |
[100,110) |
z |
0.38 |
[110,120) |
17 |
0.34 |
[120,130] |
3 |
0.06 |
(Ⅰ)求t及分布表中x,y,z的值;
(Ⅱ)设m,n是从第一组或第五组中任意抽取的两名学生的数学测试成绩,求事件
“|m—n|≤10”的概率.
(本小题满分12分)
已知,函数
。
(Ⅰ) 求的最小正周期;
(Ⅱ)求函数的最大值及取得最大值的自变量
的集合.
(本小题满分10分)选修4—5:不等式选讲
已知函数,
(Ⅰ)当时,解不等式
;
(Ⅱ)若存在,使得
成立,求实数
的取值范围.