已知||=3,|
|=5,
与
的夹角为120°.
试求:(1);
(2);
(3).
已知函数f(x)=ax+(x≠0,常数a∈R).
(1)讨论函数f(x)的奇偶性,并说明理由;
(2)若函数f(x)在x∈[3,+∞)上为增函数,求a的取值范围.
在四棱锥P-ABC中,底面ABCD是矩形,PA平面ABCD,M,N分别是AB,PC的中点。
(1)求证:MN∥平面PAD。
(2)求证:MNCD.
(3)若PD与平面ABCD所成的角为450,
求证:MN平面PCD.
当k为何值时,直线3x-(k+2)y+k+5=0与直线kx+(2k-3)y+2=0,
(1).相交(2).垂直(3).平行(4).重合。
(本题满分14分)设,
分别为椭圆
的左右焦点,过
的直线
与椭圆
相交于
,
两点,直线
的倾斜角为
,
到直线
的距离为
.
(Ⅰ)求椭圆的焦距;
(Ⅱ)如果,求椭圆
的方程.
(本题满分12分)求使函数的图像全在
轴上方成立的充要条件.