(本小题满分13分)如图,在直四棱柱中,底面是边长为
的正方形,
,点E在棱
上运动.
(Ⅰ)证明:;
(Ⅱ)若三棱锥的体积为
时,求异面直线
,
所成的角.
(本小题满分12分)已知数列满足
,
;数列
满足
,
,且
为等差数列.
(Ⅰ)求数列和
的通项公式;
(Ⅱ)求数列的前
项和
.
(本小题满分12分)已知,
,
分别为
三内角
,
,
的对边,
,
,
.
(Ⅰ)求的值;
(Ⅱ)求的面积.
(本小题满分14分)已知函数(a为常数),曲线y=f(x)在与y轴的交点A处的切线斜率为-1.
(Ⅰ)求a的值及函数f(x)的单调区间;
(Ⅱ)证明:当时,
;
(Ⅲ)证明:当时,
.
(本小题满分14分)已知椭圆C:的焦距为4,其长轴长和短轴长之比为
.
(Ⅰ)求椭圆C的标准方程;
(Ⅱ)设F为椭圆C的右焦点,T为直线上纵坐标不为0的任意一点,过F作TF的垂线交椭圆C于点P,Q.
(ⅰ)若OT平分线段PQ(其中O为坐标原点),求的值;
(ⅱ)在(ⅰ)的条件下,当最小时,求点T的坐标.