(本小题满分13分)如图,在直四棱柱中,底面是边长为的正方形,,点E在棱上运动.(Ⅰ)证明:;(Ⅱ)若三棱锥的体积为时,求异面直线,所成的角.
分别求正态总体N(μ,σ2)在区间(μ-σ,μ+σ)、(μ-2σ,μ+2σ)、(μ-3σ,μ+3σ)内取值的概率。
已知圆,及点, (1)若在圆上,求线段的长及直线的斜率; (2)若为圆上任一点,求的最大值和最小值; (3)若实数满足,求的最大值和最小值.
直线经过点,它的倾斜角是直线倾斜角的2倍,求直线的方程.
两个厂距一条河分别为和,两厂之间距离,把小河看作一条直线,今在小河边上建一座提水站,供两厂用水,要使提水站到两厂铺设的水管长度最短,问提水站应建在什么地方?
圆内有一点为过点且倾斜角为的弦. (1)当时,求的长;(2)当弦被点平分时,写出直线的方程.
试卷网 试题网 古诗词网 作文网 范文网
Copyright ©2020-2025 优题课 youtike.com 版权所有
粤ICP备20024846号