有7位歌手(1至7号)参加一场歌唱比赛,由500名大众评委现场投票决定歌手名次.根据年龄将大众评委分为五组,各组的人数如下:
组别 |
A |
B |
C |
D |
E |
人数 |
50 |
100 |
150 |
150 |
50 |
(1)为了调查评委对7位歌手的支持情况,现用分层抽样方法从各组中抽取若干评委,其中从B组抽取了6人,请将其余各组抽取的人数填入下表.
组别 |
A |
B |
C |
D |
E |
人数 |
50 |
100 |
150 |
150 |
50 |
抽取人数 |
|
6 |
|
|
|
(2)在(1)中,若A,B两组被抽到的评委中各有2人支持1号歌手,现从这两组被抽到的评委中分别任选1人,求这2人都支持1号歌手的概率.
(本小题满分12分)已知直线:
,直线
:
,其中
,
.(1)求直线
的概率;(2)求直线
与
的交点位于第一象限的概率.
(本小题满分14分)
如图6,正方形所在平面与三角形
所在平面相交于
,
平面
,且
,
.
(1)求证:平面
;
(2)求凸多面体的体积.
(本小题满分14分)
设数列的前
项和为
,且对任意的
,都有
,
.
(1)求,
的值;(2)求数列
的通项公式
;(3)证明:
.
(本小题满分14分)
已知点,直线
:
,
为平面上的动点,过点
作直线
的垂线,垂足为
,且
.(1)求动点
的轨迹
的方程;(2)已知圆
过定点
,圆心
在轨迹
上运动,且圆
与
轴交于
、
两点,设
,
,求
的最大值.
(本小题满分14分)已知,函数
,
(其中
为自然对数的底数).(1)求函数
在区间
上的最小值;(2)是否存在实数
,使曲线
在点
处的切线与
轴垂直? 若存在,求出
的值;若不存在,请说明理由.