已知椭圆的两个焦点为
,
在椭圆
上,且
.
(1)求椭圆方程;
(2)若直线过圆
的圆心
,交椭圆
于
两点,且
关于点
对称,求直线
的方程.
广东某公司为了应对美国次贷案所造成的全球性金融危机,决定适当进行裁员.已知这家公司现有职工人,每人每年可创利润10万元.根据测算,在经营条件不变的前提下,若裁员人数不超过现有人数的20%,则每裁员1人,留岗员工每人每年就能多创利润0.1万元;若裁员人数超过现有人数的20%,则每裁员1人,留岗员工每人每年就能多创利润0.12万元.为保证公司的正常运转,留岗的员工数不得少于现有员工人数的70%.为保障被裁员工的生活,公司要付给被裁员工每人每年2万元的生活费.设公司裁员人数为
,公司一年获得的纯收入为
万元.(注:年纯收入
年利润–裁员员工的生活费)
(1)求出与
的函数关系式;
(2)为了获得最大的经济效益,该公司应裁员多少人?
设函数,
(
为自然对数的底).
(1)求函数的极值;
(2)若存在常数和
,使得函数
和
对其定义域内的任意实数
分别满足
和
,则称直线
:
为函数
和
的“隔离直线”.试问:函数
和
是否存在“隔离直线”?若存在,求出“隔
离直线”方程;若不存在,请说明理由.
设椭圆M:(a>b>0)的离心率为
,长轴长为
,设过右焦点F倾斜角为
的直线交椭圆M于A,B两点。
(1)求椭圆M的方程;
(2)设过右焦点F且与直线AB垂直的直线交椭圆M于C,D,求|AB| + |CD|的最小值。
(本小题满分12分)
若数列的前
项和
是
二项展开式中各项系数的和
.
(Ⅰ)求的通项公式;
(Ⅱ)若数列满足
,且
,求数列
的通项及其前
项和
;
(III)求证:.