如图,已知抛物线经过点
,抛物线的顶点为
,过
作射线
.过顶点
平行于
轴的直线交射线
于点
,
在
轴正半轴上,连结
.
求该抛物线的解析式;
动点
从点
出发,以每秒1个长度单位的速度沿射线
运动,设点
运动的时间为
.问当
为何值时,四边形
分别为平行四边形?直角梯形?等腰梯形?
若
,动点
和动点
分别从点
和点
同时出发,分别以每秒1个长度单位和2个长度单位的速度沿
和
运动,当其中一个点停止运动时另一个点也随之停止运动.设它们的运动的时间为
,连接
,当
为何值时,四边形
的面积最小?并求出最小值及此时
的长.
已知:关于x的一元二次方程mx 2-(3m+2)x+2m+2=0(m>0).
(1)求证:方程有两个不相等的实数根;
(2)设方程的两个实数根分别为x 1,x 2(其中x 1< x 2).若y是关于x的函数,且y=x 2-2x 1,求这个函数的解析式.
已知一个二次函数y=ax 2+bx+c的图象如图所示,请求出这个二次函数的解析式。
如图,不用量角器,在方格纸中画出△ABC绕点B顺时针方向旋转90°后得到的△A 1BC 1.
解方程:
点A、B、C在同一直线上,在直线AC的同侧作△ABE和△BCF,连接AF,CE.取AF、CE的中点M、N,连接BM,BN,MN.
(1)若△ABE和△FBC是等腰直角三角形,且∠ABE=∠FBC=90°(图1),则△MBN是______三角形;
(2)在△ABE和△BCF中,若BA=BE,BC=BF,且∠ABE=∠FBC=α,(图2),则△MBN是______三角形,且∠MBN=______;
(3)若将(2)中的△ABE绕点B旋转一定角度,(图3),其他条件不变,那么(2)中的结论是否成立?若成立,给出你的证明;若不成立,写出正确的结论并给出证明.