某地区试行高考考试改革:在高三学年中举行5次统一测试,学生如果通过其中2次测试即可获得足够学分升上大学继续学习,不用参加其余的测试,而每个学生最多也只能参加5次测试.假设某学生每次通过测试的概率都是,每次测试通过与否相互独立.规定:若前4次都没有通过测试,则第5次不能参加测试.
(1)求该学生考上大学的概率;
(2)如果考上大学或参加完5次考试就结束,求该生至少参加四次考试的概率
(本小题满分13分)已知椭圆的离心率为
,直线
经过椭圆的上顶点
和右顶点
,并且和圆
相切.
(Ⅰ)求椭圆的方程;
(Ⅱ)设直线(
)与椭圆
相交于
、
两点,以线段
、
为邻边作平行四边形
,其中顶点
在椭圆
上,(其中
为坐标原点),求
的取值范围.
如图,在多面体中,四边形
是菱形,
相交于点
,
,
,平面
平面
,
,点
为
的中点.
(1)求证:直线平面
;
(2)求证:直线平面
.
(本小题满分12分)已知向量,
=
,函数
,
(1)求函数f(x)的解析式及其单调递增区间;
(2)当x∈时,求函数f(x)的值域.
抛物线M:的准线过椭圆N:
的左焦点,以坐标原点为圆心,以t(t>0)为半径的圆分别与抛物线M在第一象限的部分以及y轴的正半轴相交于点A与点B,直线AB与x轴相交于点C.
(1)求抛物线M的方程.
(2)设点A的横坐标为x1,点C的横坐标为x2,曲线M上点D的横坐标为x1+2,求直线CD的斜率.
已知在四棱锥中,底面
是矩形,且
,
,
平面
,
、
分别是线段
、
的中点.
(1)证明:
(2)若与平面
所成的角为
,求二面角
的余弦值