(12分) 如图,已知△ABC是正三角形,EA、CD都垂直于平面ABC,且EA=AB=2a,DC=a,F是BE的中点,求证:(1) FD∥平面ABC; (2) AF⊥平面EDB.
设有2009个人站成一排,从第一名开始1至3报数,凡报到3的就退出队伍,其余的向前靠拢站成新的一排,再按此规则继续进行,直到第p次报数后只剩下3人为止,试问最后剩下3人最初在什么位置?
.已知矩阵,其中,若点在矩阵的变换下得到点, (1)求实数a的值; (2)求矩阵的特征值及其对应的特征向量.
求证:
如图,⊙O是等腰三角形ABC的外接圆,AB=AC,延长BC到点D,使CD=AC,连接AD交⊙O于点E,连接BE与AC交于点F. ⑴判断BE是否平分∠ABC,并说明理由; ⑵若AE=6,BE=8,求EF的长.
在直径是的半圆上有两点,设与的交点是. 求证:
试卷网 试题网 古诗词网 作文网 范文网
Copyright ©2020-2025 优题课 youtike.com 版权所有
粤ICP备20024846号