(本小题满分14分)如图所示,某市政府决定在以政府大楼O为中心、正北方向
和正东方向的马路为边界的扇形地域内建造一个图书馆.为了充分利用这块土地,并考
虑与周边环境协调,设计要求该图书馆底面矩形的四个顶点都要在边界上,图书馆的正
面要朝市政府大楼.设扇形的半径OM=R ,,OB与OM之间的夹角为
.
(1)将图书馆底面矩形ABCD的面积S表示成的函数.
(2)若 R=45 m,求当为何值时,矩形ABCD的面积S有最大值?
其最大值是多少?
(本小题满分10分)选修:不等式选讲
已知函数,
(Ⅰ)解关于的不等式
;
(Ⅱ)若函数的图像恒在函数
图像的上方,求实数
的取值范围.
(本小题满分10分)选修;坐标系与参数方程
在直角坐标系中,以坐标原点为极点,
轴正半轴为极轴建立极坐标系,已知某圆的极坐标方程为:
.
(Ⅰ)将极坐标方程化为普通方程;
(Ⅱ)若点P(x,y)在该圆上,求x+y的最大值和最小值.
(本小题满分10分)选修:几何证明选讲
如图,圆内接四边形的边
与
的延长线交于点
,点
在
的延长线上.
(Ⅰ)若,求
的值;
(Ⅱ)若,证明:
.
(本小题满分12分)已知函数(其中
),函数
在点
处的切线过点
.
(Ⅰ)求函数的单调区间;
(Ⅱ)若函数与函数
的图像在
有且只有一个交点,求实数
的取值范围.
(本小题满分12分)已知椭圆的左右焦点分别是
,直线
的方程是
,点
是椭圆
上动点(不在
轴上),过点
作直线
的垂线交直线
于点
,当
垂直
轴时,点
的坐标是
.
(Ⅰ)求椭圆的方程;
(Ⅱ)判断点运动时,直线
与椭圆
的公共点个数,并证明你的结论.