(本小题满分14分)
设椭圆的离心率为
=
,点
是椭圆上的一点,
且点到椭圆
两焦点的距离之和为4.
(1)求椭圆的方程;
(2)椭圆上一动点
关于直线
的对称点为
,
求的取值范围.
(本小题满分16分)已知点为椭圆
上的任意一点(长轴的端点除外),
、
分别为左、右焦点,其中a,b为常数.
(1)若点P在椭圆的短轴端点位置时,为直角三角形,求椭圆的离心率.
(2)求证:直线为椭圆在点P处的切线方程;
(3)过椭圆的右准线上任意一点R作椭圆的两条切线,切点分别为S、T.请判断直线ST是否经过定点?若经过定点,求出定点坐标,若不经过定点,请说明理由.
(本小题满分16分)某仓库为了保持库内温度,四周墙上装有如图所示的通风设施,该设施的下部是等边三角形ABC,其中AB=2米,上部是半圆,点E为AB的中点.△EMN是通风窗,(其余部分不通风)MN是可以沿设施的边框上下滑动且保持与AB平行的伸缩杆(MN和AB不重合).
(1)设MN与C之间的距离为x米,试将△EMN的面积S表示成的函数
;
(2)当MN与C之间的距离为多少时,△EMN面积最大?并求出最大值.
(本小题满分14分)设都是正数,且
,试用反证法证明:
和
中至少有一个成立.
(本小题满分14分)已知函数,
.
(1)求的最小正周期及
的最小值;
(2)若,且
,求
的值.
(本小题满分14分)已知命题和命题
.若“
”与“非
”同时为假命题,求实数
的值.