设数列的前n项和为Sn=2n2,
为等比数列,且
(Ⅰ)求数列和
的通项公式;
(Ⅱ)设,求数列
的前n项和Tn.
已知函数,
的最大值为2.
(Ⅰ)求函数在
上的值域;
(Ⅱ)已知外接圆半径
,
,角
所对的边分别是
,求
的值.
在平面直角坐标系中,已知
分别是椭圆
的左、右焦点,椭圆
与抛物线
有一个公共的焦点,且过点
.
(Ⅰ)求椭圆的方程;
(Ⅱ)设点是椭圆
在第一象限上的任一点,连接
,过
点作斜率为
的直线
,使得
与椭圆
有且只有一个公共点,设直线
的斜率分别为
,
,试证明
为定值,并求出这个定值;
(III)在第(Ⅱ)问的条件下,作,设
交
于点
,
证明:当点在椭圆上移动时,点
在某定直线上.
已知为函数
图象上一点,
为坐标原点,记直线
的斜率
.
(Ⅰ)若函数在区间
上存在极值,求实数
的取值范围;
(Ⅱ)如果对任意的,
,有
,求实数
的取值范围.
生产A,B两种元件,其质量按测试指标划分为:指标大于或等于82为正品,小于82为
次品,现随机抽取这两种元件各100件进行检测,检测结果统计如下:
测试指标 |
![]() |
![]() |
![]() |
![]() |
![]() |
元件A |
8 |
12 |
40 |
32 |
8 |
元件B |
7 |
18 |
40 |
29 |
6 |
(Ⅰ)试分别估计元件A、元件B为正品的概率;
(Ⅱ)生产一件元件A,若是正品可盈利50元,若是次品则亏损10元;生产一件元件B,若是正品可盈利100元,若是次品则亏损20元,在(Ⅰ)的前提下;
(i)求生产5件元件B所获得的利润不少于300元的概率;
(ii)记X为生产1件元件A和1件元件B所得的总利润,求随机变量X的分布列和数学期望.
设各项均为正数的数列的前
项和为
,满足
且
恰好是等比数列
的前三项.
(Ⅰ)求数列、
的通项公式;
(Ⅱ)记数列的前
项和为
,若对任意的
,
恒成立,求实数
的取值范围.