(10分)已知数列
的前
项和
,
。
(1)求数列的通项公式
;
(2)记,求
某地区为了了解某地区高中生的身体发育情况,对某一中学的随机抽取的50名学生的体重进行了测量,结果如下:(单位:kg)
42,38,29,36,41,43,54,43,34,44,40,59,39,42,44,50,37,44,45,29,48,45,53,48,37,28,46,50,37,44,
42,39,51,52,62,47,59,46,45,,67,53,49,65,47,54,63,58,43,46,58.
分组 |
频数 |
频率 |
频率/组距 |
[27,32) |
0.06 |
||
[32,37) |
0.06 |
||
[37,42) |
9 |
||
[42,47) |
0.064 |
||
[47,52) |
7 |
||
[52,57) |
5 |
||
[57,62) |
4 |
||
[62,67) |
0.06 |
(1)若以组距为5,完成下面样本频率分布表:
(2)根据(1)中的频率分布表,画出频率分布直方图;
(3)若本地区学生总人数为3000人,试根据抽样比例,估计本地区学生体重在区间[37,57]内所占的人数约为多少人?
某研究机构对高三学生的记忆力x和判断力y进行统计分析,得下表数据:
x |
6 |
8 |
10 |
12 |
y |
2 |
3 |
5 |
6 |
(1)请在图中画出上表数据的散点图;
(2)请根据上表提供的数据,用最小二乘法求出y关于x的线性回归方程;
(3)试根据(2)求出的线性回归方程,预测记忆力为9的同学的判断力.
某市电视台在因特网上征集电视节目的现场参与观众,报名的共有12000人,分别来自4个城区,其中东城区2400人,西城区4600人,南城区3800人,北城区1200人,从中抽取60人参加现场节目,应当如何抽取?
已知定义在R上的函数的最小值为
.
(1)求的值;
(2)若为正实数,且
,求证:
.
以平面直角坐标系的原点为极点,轴正半轴为极轴,建立极坐标系,两种坐标系中取相同的长度单位,设点
的极坐标为
,直线
过点
且与极轴成角为
,圆
的极坐标方程为
.
(1) 写出直线参数方程,并把圆
的方程化为直角坐标方程;
(2) 设直线与曲线圆
交于
、
两点,求
的值.