游客
题文

已知椭圆C:=1(a>b>0)的离心率e=,左、右焦点分别为F1、F2,点P(2,),点F2在线段PF1的中垂线上.
(Ⅰ)求椭圆C的方程;
(Ⅱ)设直线l:y=kx+m与椭圆C交于M、N两点,直线F2M与F2N的倾斜角分别为α,β,且α+β=π,试问直线l是否过定点?若过,求该定点的坐标.

科目 数学   题型 解答题   难度 中等
知识点: 平面解析几何的产生──数与形的结合
登录免费查看答案和解析
相关试题

已知函数,若函数处的切线方程为
(1)求的值;
(2)求函数的单调区间。

延迟退休年龄的问题,近期引发社会的关注.人社部于2012年7月25日上午召开新闻发布会表示,我国延迟退休年龄将借鉴国外经验,拟对不同群体采取差别措施,并以“小步慢走”的方式实施.推迟退休年龄似乎是一种必然趋势,然而反对的声音也随之而起.现对某市工薪阶层关于“延迟退休年龄”的态度进行调查,随机抽取了50人,他们月收入的频数分布及对“延迟退休年龄”反对的人数

月收入(元)
[1000,2000)
[2000,3000)
[3000,4000)
[4000,5000)
[5000,6000)
[6000,7000)
频数
5
10
15
10
5
5
反对人数
4
8
12
5
2
1

(1)由以上统计数据估算月收入高于4000的调查对象中,持反对态度的概率;
(2)若对月收入在[1000,2000),[4000,5000)的被调查对象中各随机选取两人进行跟踪调查,记选中的4人中赞成“延迟退休年龄”的人数为,求的分布列和数学期望.

已知函数
(1) 当时, 求函数的单调增区间;
(2)当时,求函数在区间上的最小值;

已知函数,其中
(1)若曲线在点处的切线方程为,求函数的解析式;
(2)讨论函数的单调区间;

如图,四棱锥的底面是正方形,,点在棱上.

(Ⅰ) 求证:平面平面
(Ⅱ) 当,且时,确定点的位置,即求出的值.

Copyright ©2020-2025 优题课 youtike.com 版权所有

粤ICP备20024846号